Research in the Smith group is focused on developing technological solutions to societal problems at the intersection of energy and water by using mechanical engineering knowledge of mechanics, transport of molecules and heat inside of fluids and solids, and thermodynamics of electrochemical reactions. On these problems we bring to bear a unique toolset that combines capabilities in numerical modeling and experimentation, incorporation of physicochemical phenomena over a range of scales, and by coupling different types of physics to develop multi-functional devices and materials. We are particularly interested in research problems at the intersection of energy and water demands, which our global society is likely to become increasingly burdened with in the future. Therefore, we have a forward-looking perspective in our approach to solving these problems, where unconventional solutions are developed based on detailed knowledge of physicochemical phenomena, combined with creative design. The technological solutions that we develop require application of knowledge from a variety of disciplines, including mechanical engineering, materials science, chemistry, and physics. Therefore, Prof. Smith’s group is known as the Forward-Looking Interdisciplinary New-Technology Team or FLINT.

One thrust of our research involves the development of materials and devices for energy storage applications. Of late, we have utilized techno-economic modeling of redox-flow battery systems to assess the impact of the properties of redox active fluids on the costs of a large system, which is a critical barrier for the penetration of energy storage on the electric grid to enable efficient utilization of renewable energy resources (e.g., wind and solar power). In doing this, we have determined criteria by which to select materials for flow batteries on the basis of cost. Within these devices we have also investigated the role of operating conditions on the performance of flow batteries, including the role of flow rate on the achievable charging levels that a battery is capable of. Furthermore, we are utilizing computational models of electrochemical transport phenomena to optimize the distribution of material within microscopic electrodes for various types of rechargeable electrochemical devices, including lithium-ion batteries. One application for such electrodes may be for electric vehicles, where weight, volume, and cost constraints require the use of energy-dense batteries. Here, knowledge of manufacturing processes must be integrated with evaluation of electrochemical performance in order to determine the optimal structures that we are also developing.

Another thrust of our research involves the development of materials and devices for clean water applications. Though not typical research areas for mechanical engineers, Prof. Smith’s group has utilized mechanical engineering principles to introduce novel electrochemical technology for these applications, including through the use of battery materials for desalination applications. Using a theoretical modeling approach to couple microscale sodium ion intercalation processes to the transport of ions within salt water, Prof. Smith’s group showed that a sodium-ion battery could be used to desalinate seawater-level concentrations of NaCl energy consumption levels near thermodynamic energy minimums. Here, work has continued in his group developing alternative cell architectures for these devices, as well synthesizing nanoparticulate, multi-cation absorbing compounds. In addition, Prof. Smith’s group is developing models for capacitive deionization devices to desalinate brackish water efficiently.